

Infoveranstaltung Endlagersuche "Wirtsgesteine": Die Rolle der Wirtsgesteine bei der Endlagersuche für hochradioaktive Abfälle aus der Nutzung der Atomenergie

Die Wirtsgesteine bei der Standortsuche für ein Endlager für wärmeentwickelnde radioaktive Abfälle

Nicole Schubarth-Engelschall & Lukas Pollok

Infoveranstaltung Landkreis Harburg, Winsen (Luhe)

Bundesanstalt für Geowissenschaften und Rohstoffe

Inhalt

- 1. Einführung
- 2. Wirtsgestein Kristallin
- 3. Wirtsgestein Tongestein
- 4. Wirtsgestein Steinsalz
- 5. Fazit

Definition, Entstehung, Vorkommen, Eigenschaften

Einführung

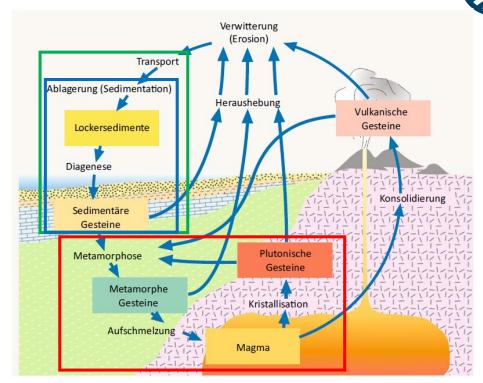
Was macht die BGR?

- Die Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) ist eine Ressortforschungseinrichtung im Geschäftsbereich des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK).
- Die BGR ist die **zentrale Forschungs- und Beratungseinrichtung der Bundesregierung** auf dem Gebiet der **Geowissenschaften und Rohstoffe**. Sie erbringt hoheitliche und öffentliche Leistungen
- Ihre **Aufgaben** umfassen u.a.:
 - die rohstoffwirtschaftliche und geowissenschaftliche Beratung der Bundesregierung und der deutschen Wirtschaft insbesondere zur langfristigen Sicherung der Rohstoff- und Energieversorgung der Bundesrepublik Deutschland, der Endlagerung hochradioaktiver Abfälle und dem nachhaltigen Georessourcenmanagement;
 - die **nationale und internationale** geowissenschaftliche und technische **Zusammenarbeit** in den Bereichen Geowissenschaften, Rohstoffe, Boden und Grundwasser sowie Georisiken und **Endlagerung radioaktiver Abfälle.**

Einführung

Rolle der BGR bei der Endlagerung radioaktiver Abfälle

- anwendungsorientierte Forschung zu Endlagerfragen
- Untersuchungen zur Standortauswahl
- geologisch-geotechnische Standorterkundung
- gesteinsphysikalische Charakterisierung der Wirtsgesteine Steinsalz, Tongestein und Kristallingestein
- Modellierung der geologischen Gesamtsituation
- Analyse von zukünftigen (geologischen)
 Szenarien für die Langzeitsicherheit



Quelle: BGR

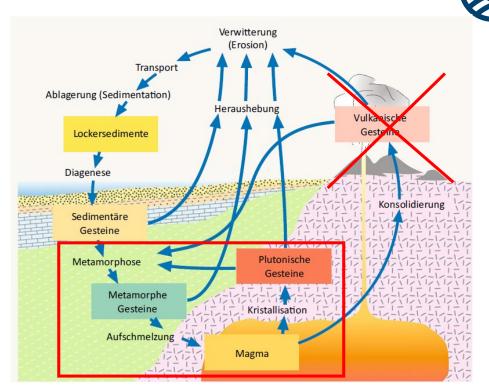
Einführung

Wirtsgesteine

- 1. Kristallingestein
- 2. Tongestein
- 3. Steinsalz

▲ Kreislauf der Gesteine

Quelle: Meschede, 2015

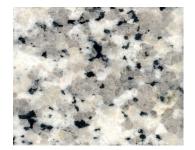

BGR

KristallingesteinDefinition & Bildung

Welche Gesteine?

Laut BGE (2020) gelten als kristalline Wirtsgesteine:

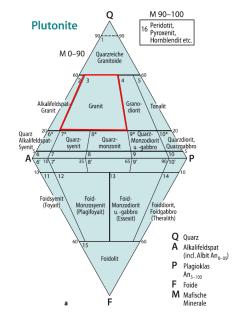
- Plutonite
- Hochgradig regionalmetamorphe Gesteine


▲ Kreislauf der Gesteine

Quelle: Meschede, 2015

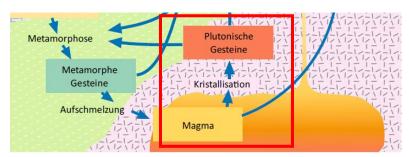
BGR

KristallingesteinDefinition & Bildung


Plutonite: z.B. Granit

Wie entstanden?

Durch Kristallisation von Magma in der Erdkruste

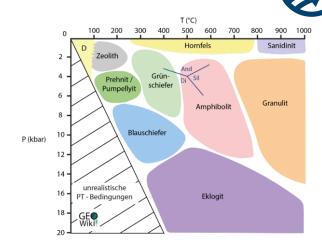

→ Intrusivgesteine

 Klassifikation der Plutonite im Q-A-P-F Doppeldreieck

(nach Streckeisen, 1974, 1980); Quelle: Okrusch und Matthes, 2014

▲ Kreislauf der Gesteine

Definition & Bildung

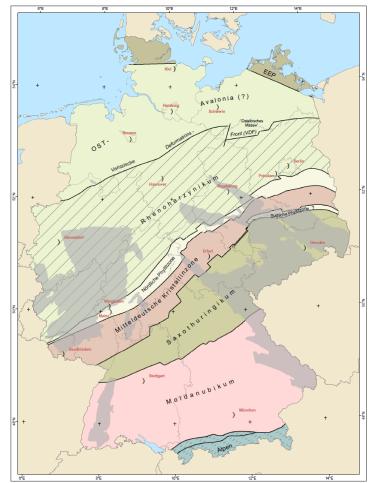

Hochgradig regional-metamorphe Gesteine: z.B. Gneis

Wie entstanden?

- z.B. aus Granit, welcher hohen Drücken und Temperaturen ausgesetzt war
- → Ortho-Gneis (= überprägter Granit)

▲ Entstehung metamorpher Gesteine Quelle: modifiziert nach Sebastian, 2013

BGR


▲ Kreislauf der Gesteine

Kristallingestein Vorkommen

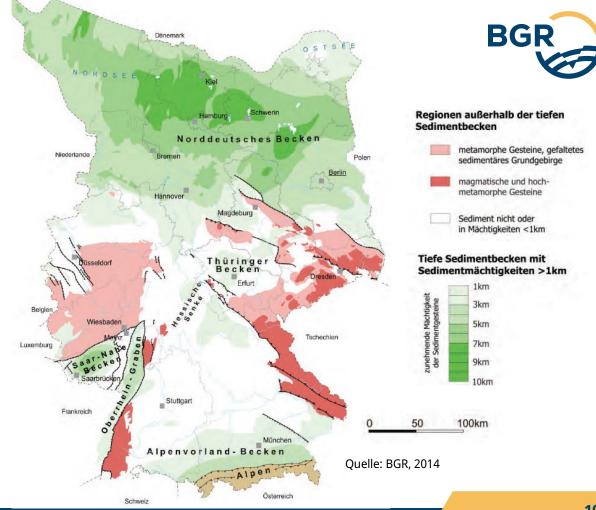
Wo kommt kristallines Gestein vor?

Einteilung in tektonostratigrafische Einheiten

→ Jede Einheit hat die gleiche Deformationsgeschichte, enthält aber verschiedene Gesteinstypen

Quelle: Reinhold, 2005

KristallingesteinVorkommen

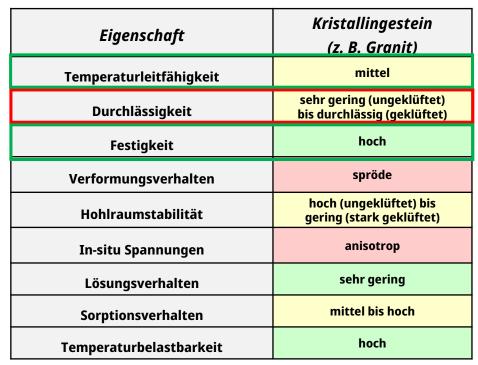

Wie kommt kristallines Gestein vor?

An der Oberfläche aufgeschlossen (anstehend):

z.B. im Bayerischen Wald, Schwarzwald oder Harz

Mit sedimentärer Überdeckung (<1km):

Bspw. in Bayern / Ba-Wü

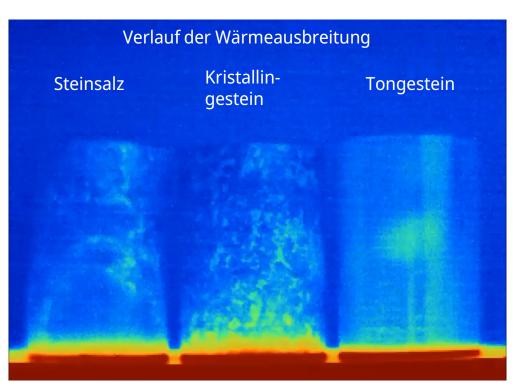


Gesteinseigenschaften

Eigenschaft			
Temperaturleitfähigkeit			
Durchlässigkeit			
Festigkeit			
Verformungsverhalten			
Hohlraumstabilität			
In-situ Spannungen			
Lösungsverhalten			
Sorptionsverhalten			
Temperaturbelastbarkeit			

Gesteinseigenschaften

Quelle: verändert nach BGR, 2007


	günstig		bedingt günstig		ungünstig
--	---------	--	-----------------	--	-----------

Gesteinseigenschaft: Temperaturleitfähigkeit

Experiment zur Wärmeausbreitung ▲ ► Quelle: BGR

→ Hohe Festigkeit und Hohlraumstabilität

Gesteinseigenschaft: Hohlraumstabilität und Festigkeit

BGR

- → Kein Ausbau der Tunnel notwendig

▲ Tunnel im Granit (Felslabor Grimsel, Schweiz)

Quelle: BGR

Gesteinseigenschaft: Durchlässigkeit (Wasserwegsamkeiten)

→ Sehr gering für ungeklüftetes
Kristallingestein
(Lausitzer Granodiorit)

Intakte, ungeklüftete Bohrkerne (10 cm Ø)

→ Durchlässig für **geklüftetes**Kristallingestein

Klüfte im Steinbruch des Seebach-Granits (Nordschwarzwald)

Quelle: LGRB, 2013

Quelle: BGR

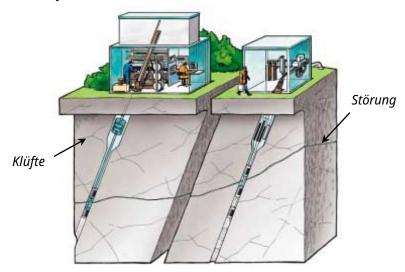
Ein Ziel für die übertägige Erkundung

Auffinden von Wasserwegsamkeiten:

Erkundung aus Luft

Bohrungen Geol. Kartierung

Lokale Störungen und Klüfte

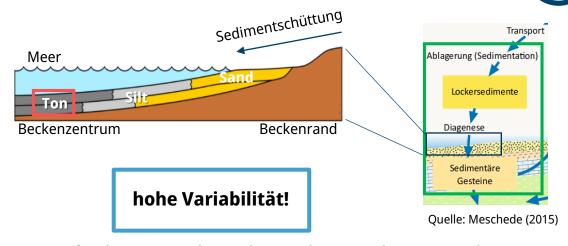

Regionale Quelle: SKB, 2001

Störungen

Konnektivität von Wasserwegsamkeiten:

Hydraulische Bohrlochtests

Quelle: SKB, 2001


TongesteinDefinition & Bildung

Quelle: BGR

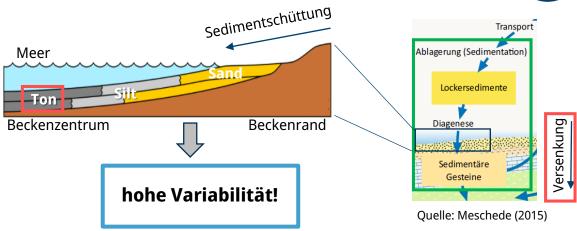
Foto: Adobe Stock

- <u>Ton</u>: feinkörniges, plastisches Sediment; überwiegend aus Partikeln < 0,002 mm aufgebaut (Tonfraktion)
- Entsteht in Beckenzentren durch Ablagerung von feinkörnigen Gesteinspartikeln
- Richtung Beckenrand: Silt- und Sand

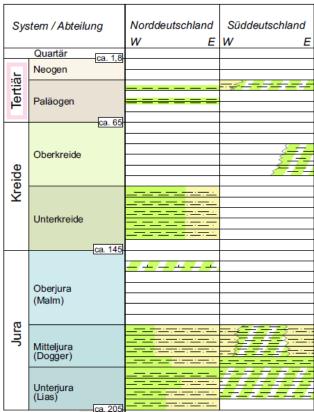
Ton	Silt	Sand
< 0,002 mm	0,002 – 0,063 mm	0,063 – 2 mm

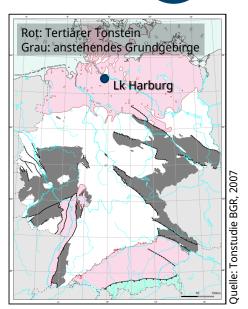
BGR

Definition & Bildung



Quelle: BGR


Quelle: BGR



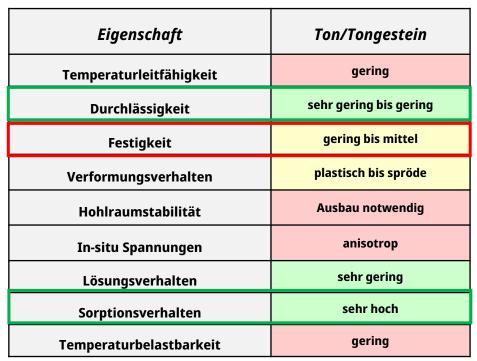
- Nach Kompaktion und Verfestigung durch Versenkung entsteht <u>Tongestein</u>
- Quarzreich = <u>Siltstein</u> / <u>Sandstein</u>
- Karbonatreich = Mergel
- Zusammensetzung & Entstehungsgeschichte der Tone begründen unterschiedliche Materialeigenschaften (Fazies)

Vorkommen

- Die Ablagerung von Tongesteinen ist an Sedimentbecken gebunden
- Tongesteinsformationen treten geologisch bedingt großflächig in Nund in Teilen von S-Deutschland auf
- Bedeutende Ablagerungen treten in den Zeitaltern Unter- & Mitteljura, Unterkreide sowie Tertiär auf

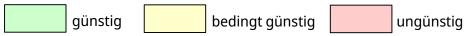
BGR

Formation mit hohem Ton-/Tonsteinanteil


regionale/lokale Verbreitung von Tongesteinen mit guter räumlicher Charakterisierbarkeit - besonders endlagerrelevant

regionale/lokale Verbreitung von Tongesteinen mit stark eingeschränkter räumlicher Charakterisierbarkeit

·<u>···</u>·


Formation mit höherem grobklastischen Anteil (Sandsteine, Siltsteine)

Gesteinseigenschaften

Quelle: verändert nach BGR, 2007

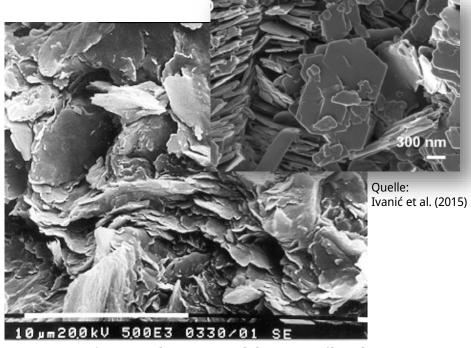
Gesteinseigenschaft: Festigkeit

BGR

- Hohlraumstabilität: Ausbildung einer stollennahen entfestigten Auflockerungszone
- Sicherungsmaßnahmen (Spritzbeton und Ausbau) notwendig

▲ Spritzbetonauskleidung im Felslabor Mont Terri, Schweiz

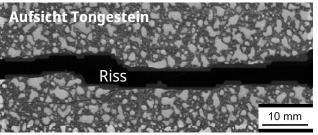
Quelle: Swisstopo



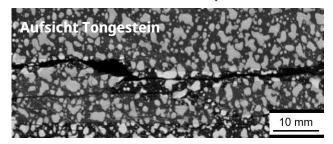
Quelle: BGR

Gesteinseigenschaft: Rückhaltevermögen

- Tonminerale: Mineralphasen mit großer, reaktionsfreudiger Oberfläche
- Bedingt gute Rückhalteeigenschaften (z.B. Bindung von Zerfallsprodukten des radioaktiven Abfalls)



▲ Tongestein unter dem Rasterelektronenmikroskop Quelle: BGR

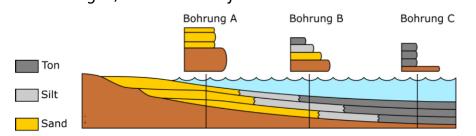

Gesteinseigenschaft: Durchlässigkeit

- Rückbildung von Durchlässigkeit durch "Rissschließung"
- ➤ U.a. zurückzuführen auf Quellfähigkeit eines Teils der Tonminerale, d. h. sie können bei Befeuchtung anschwellen.

▲ Experiment: Langsame, kontrollierte Befeuchtung schließt offenen Riss

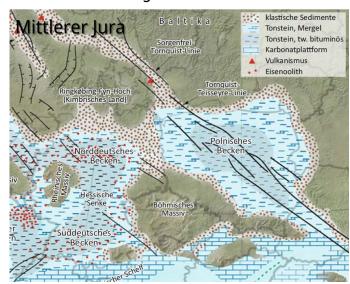
Quelle: BGR, B. Laurich

Ein Ziel für die übertägige Erkundung

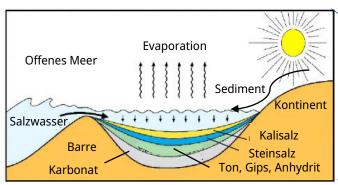


Vertikale & horizontale Variabilität der Tongesteinsabfolgen

Variabilität beeinflusst u. a.:

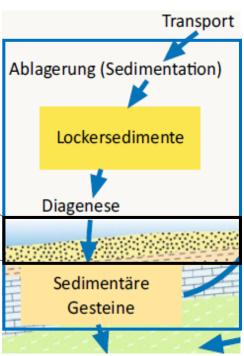

- Festigkeit, Durchlässigkeit
- Rückhaltevermögen, Quellfähigkeit (Tongehalt) Untersuchung erlaubt Vorhersagen zu u. a.:
- Verbreitung, beckenweite Mindestmächtigkeiten
- Verteilung potentiell geeigneter / ungeeigneter Abschnitte

Geol. Bohrungen, Seismik → Profilschnitte

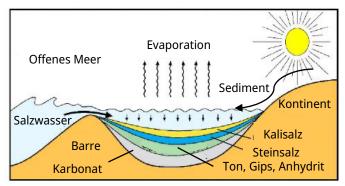

Entwicklung geologischer Modelle

→ Faziesverteilungskarten

Definition & Bildung



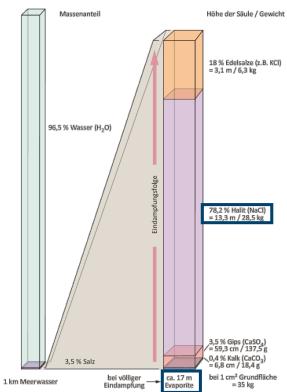
▲ Bildung von Salzlagerstätten


Quelle: verändert nach Ochsenius, 1877

 Chemisches Sedimentgestein, durch Ausfällung aus verdunstendem Meerwasser entstanden ("Evaporit")

Besteht überwiegend aus dem Mineral Halit (NaCl)

Definition & Bildung

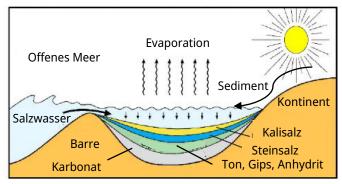


▲ Bildung von Salzlagerstätten

Quelle: verändert nach Ochsenius, 1877

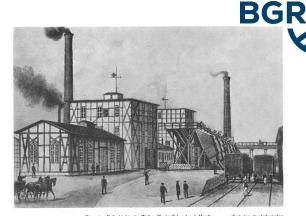
- Chemisches Sedimentgestein, durch Ausfällung aus verdunstendem Meerwasser entstanden ("Evaporit")
- Besteht überwiegend aus dem Mineral Halit (NaCl)

Definition & Bildung



▲ Salar de Uyuni, Bolivien

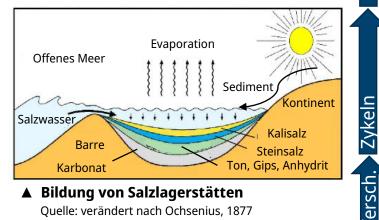
▲ Totes Meer, Israel


Definition & Bildung

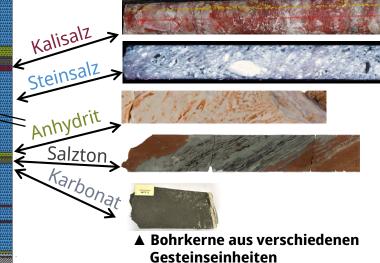
▲ Bildung von Salzlagerstätten

Quelle: verändert nach Ochsenius, 1877

- Chemisches Sedimentgestein, durch Ausfällung aus verdunstendem Meerwasser entstanden ("Evaporit")
- Besteht überwiegend aus dem Mineral Halit (NaCl)
- Rohstoff, Gewinnung durch Bergbau oder Aussolung

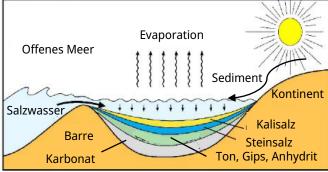

▲ Erste Kalischächte der Welt v. Manteuffel und v. d. Heydt (1852)

▲ Moderner Salzbergbau Quelle: K+S



Definition & Bildung

Quelle: verändert nach Ochsenius, 1877


Salzlagerstätten bestehen nicht nur aus Steinsalz!

Zechstein-Normalprofil im Norddeutschen Becken ▶

Quelle: BGR

Quelle: BGR

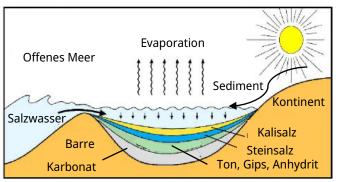
▲ Bildung von Salzlagerstätten

Quelle: verändert nach Ochsenius, 1877

ersch. **Zechstein-Normalprofil im** Norddeutschen Becken ▶

400 m bis > 1200 m

▲ Verbreitung permischer (ca. 252-260 Mio. Jahre alter) Salzablagerungen

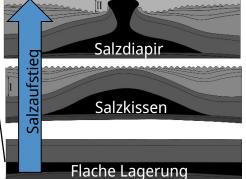

Quelle: Reinhold et al. 2014

30

BGR

Wirtsgestein: Steinsalz

Flache und steile Lagerung


▲ Bildung von Salzlagerstätten

Quelle: verändert nach Ochsenius, 1877

Zechstein-Normalprofil im Norddeutschen Becken ▶

Salzlagerstätten bestehen nicht nur aus Steinsalz!

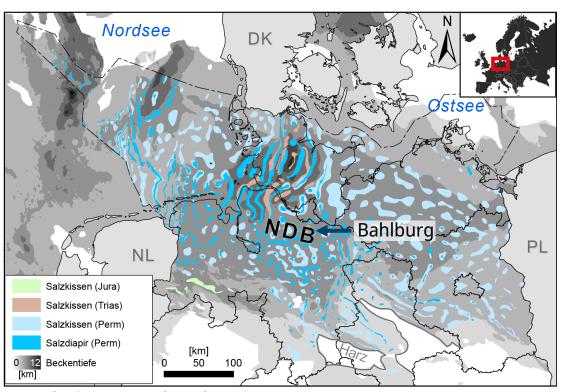
▲ Entstehung von "steiler Lagerung", Salzstrukturbildung, "Halokinese" Quelle: verändert nach Trusheim, 1960

▲ Komplex verfalteter Internbau: **Bsp.: Marmorkuchen**

Quelle: gutekueche.at

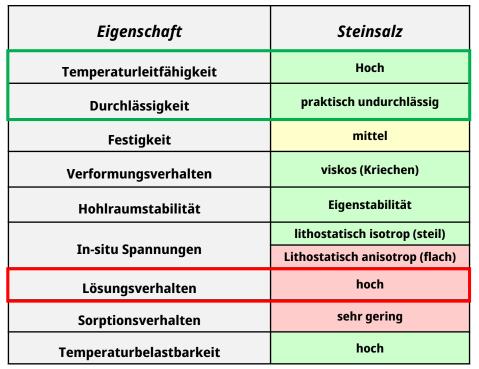
Quelle: BGR

Wirtsgestein: Steinsalz


Verbreitung Salzstrukturen

BGR

- Ca. 700 Salzstrukturen im Norddeutschen Becken
- Große Variabilität (Verbreitung, Größe und äußere Form)

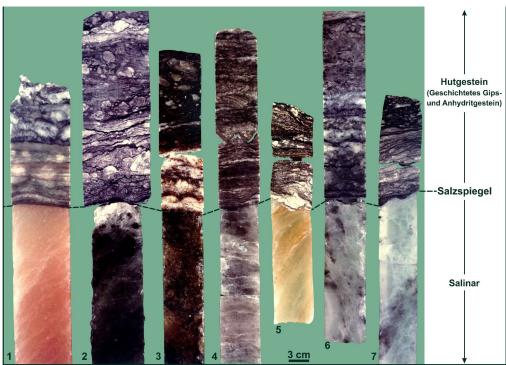

▲ Verschiedene Salzstrukturformen Quelle: Trusheim (1957)

▲ Verbreitung von Salzstrukturen

Quelle: verändert nach Reinhold et al. 2008, Doornenbal & Stevenson, 2010

Gesteinseigenschaften

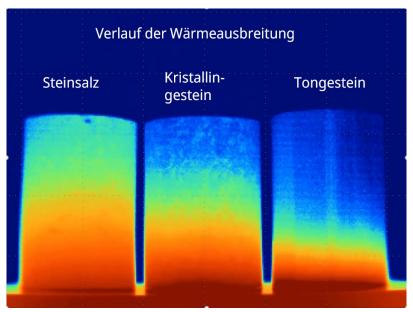
Quelle: verändert nach BGR, 2007


günstig bedingt günstig ungünstig

Gesteinseigenschaft: Lösungsverhalten

BGR

 Hohe Wasserlöslichkeit gegenüber ungesättigten Wässern (z. B. Grundwasser)



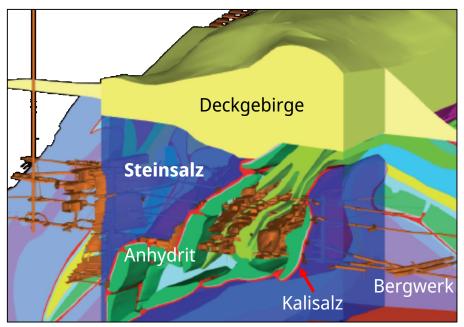
▲ Bildung von Hutgestein am Beispiel verschiedener Bohrkerne Quelle: Bornemann et al., 2008

Gesteinseigenschaften: Temperaturleitfähigkeit & Durchlässigkeit

▲ Experiment zur Wärmeausbreitung Ouelle: BGR

Sehr hohe Temperaturleitfähigkeit

▲ Speicherkavernen im Salz


Quelle: DEEP.KBB

Undurchlässig, dicht

35

Ein Ziel für die übertägige Erkundung

▲ 3D-Modell einer beispielhaften Salzstruktur ("steile Lagerung")

Quelle: BGR

▲ Komplex verfalteter Internbau; Bsp.: Marmorkuchen Quelle: gutekueche.at

Fazit

BGR

Vergleich der Wirtsgesteinseigenschaften

Eigenschaft	Steinsalz	Ton/Tonstein	Kristallingestein (z.B. Granit)
Temperaturleitfähigkeit	hoch	gering	mittel
Durchlässigkeit	praktisch undurchlässig	sehr gering bis gering	sehr gering (ungeklüftet) bis durchlässig (geklüftet)
Festigkeit	mittel	gering bis mittel	hoch
Verformungsverhalten	viskos (Kriechen)	plastisch bis spröde	spröde
Hohlraumstabilität	Eigenstabilität	Ausbau notwendig	hoch (ungeklüftet) bis gering (stark geklüftet)
In-situ Spannungen	lithostatisch isotrop (steil) lithostatisch anisotrop (flach)	anisotrop	anisotrop
Lösungsverhalten	hoch	sehr gering	sehr gering
Sorptionsverhalten	sehr gering	sehr hoch	mittel bis hoch
Temperaturbelastbarkeit	hoch	gering	hoch

günstig bedingt günstig ungünstig

Quelle: verändert nach BGR, 2007

Fazit

günstig

Vergleich der Wirtsgesteinseigenschaften

bedingt günstig

Eigenschaft	Steinsalz	Ton/Tonstein	Kristallingestein (z.B. Granit)	
Temperaturleitfähigkeit	hoch	gering	mittel	
Durchlässigkeit	praktisch undurchlässig	sehr gering bis gering	sehr gering (ungeklüftet) bis durchlässig (geklüftet)	
Eastinkait	mittel	gering bis mittel	hoch	
Standortauswahlgesetz (2017 (5) Die Mindestanforderungen sin	iskos (Kriechen)	plastisch bis spröde	spröde	
Gebirgsdurchlässigkeit	Eigenstabilität	Ausbau notwendig	hoch (ungeklüftet) bis gering (stark geklüftet)	
in einem einschlusswirksamen Geb betragen; sofern ein direkter Nachv noch nicht möglich ist, muss nachg	veis in den Begründunger ewiesen werden, dass de	n für die Vorschläge nach d r einschlusswirksame Gebii	en §§ 14 und 16 gsbereich aus	
Gesteinstypen besteht, denen eine Erfüllung des Kriteriums kann auch werden;				
Quelle: BC				

ungünstig

Fazit

Wirtsgesteine für die Endlagerung von radioaktivem Abfall in Deutschland

- Deutschland ist in der günstigen (?) Ausgangslage, dass drei Wirtsgesteine für die Endlagerung von radioaktivem Abfall in Betracht kommen und diese großflächig in Deutschland verbreitet sind.
- ➤ Ein ideales Wirtsgestein mit ausschließlich günstigen endlagerrelevanten Gesteinseigenschaften existiert nicht.
- Die drei Wirtsgesteine haben unterschiedliche Vor- und Nachteile.

BGR

Quellenverzeichnis

- BGE (2020): Begriffsbestimmung Kristallines Wirtsgestein. Geschäftszeichen: SG02103/8/1-2020#3.
- BGE (2020): Begriffsbestimmung Wirtsgestein Tonstein/ Tongestein. Geschäftszeichen: SG02102/8/2-2020#8.
- BGR (2007): Endlagerung radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands. Untersuchung und Bewertung von Tongesteinsformationen ("Tonstudie"). Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): 118 S.; Berlin/Hannover.
- BGR (2014): Der tiefere geologische Untergrund von Deutschland Kurzübersicht über Verteilung und Dichte geowissenschaftlicher Daten und Informationen. Vorlage für die Kommission "Lagerung hoch radioaktiver Abfallstoffe", Hannover.
- Bornemann, O., Behlau, J., Fischbeck, R., Hammer, J., Jaritz, W., Keller, S., Mingerzahn, G. & Schramm, M. (2008): Standortbeschreibung Gorleben Teil 3: Ergebnisse der über- und untertägigen Erkundung des Salinars. Geologisches Jahrbuch, C, 73: 1-211.
- Doornenbal, J.C. & Stevenson, A.G. (2010): Petroleum Geological Atlas of the Southern Permian Basin Area. 342 S.; Houten (EAGE Publications b.v.).
- Ivanić, M. et al. (2015): Mineralogy, surface properties and electrokinetic behaviour of kaolin clays. Geologia Croatica, 68, 139-145.
- LGRB (2013): Buch der Naturwerksteine aus Baden-Württemberg, https://lgrbwissen.lgrb-bw.de/printpdf/23408
- Meschede, M. (2015): Geologie Deutschlands. Ein prozessorientierter Ansatz. Springer-Verlag Berlin Heidelberg 2015.
- Meschede, M. (2018): Geologie Deutschlands: Ein prozessorientierter Ansatz, in: 2nd Edn., 253 S.; (Berlin) Springer Spektrum.
- Ochsenius, C. (1877): Die Bildung der Steinsalzlager und ihrer Mutterlaugensalze unter spezieller Berücksichtigung der Flötze von Douglashall in der Egelnischen Mulde. 173 S.; Halle (Pfeffer).
- Reinhold, K. (2005): Tiefenlage der Kristallin-Oberfläche in Deutschland. BGR Abschlussbericht.
- Reinhold, K., Krull, P. & Kockel, F. (2008): Salzstrukturen Norddeutschlands 1: 500 000. Bundesanstalt für Geowissenschaften und Rohstoffe; Berlin/Hannover.
- Reinhold, K., Hammer, J. & Pusch, M. (2014): Verbreitung, Zusammensetzung und geologische Lagerungsverhältnisse flach lagernder Steinsalzfolgen in Deutschland (BASAL). Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Bericht: 98 S.; Hannover.
- Sebastian, U. (2013): Die Geologie des Erzgebirges. Springer-Verlag Berlin Heidelberg 2013.
- SKB (2001): Site investigations Investigation methods and general execution programme. Technical Report TR-01-29, Svensk Kärnbränslehantering AB, Sweden.
- Trusheim, F. (1957): Über Halokinese und ihre Bedeutung für die strukturelle Entwicklung Norddeutschlands. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. 109: 111-151.
- Trusheim, F. (1960): Mechanism of Salt Migration in Northern Germany. American Association of Petroleum Geologists Bulletin, 44, 9: 1519-1540.

Impressum

Herausgeber:

Bundesanstalt für Geowissenschaften und Rohstoffe Stilleweg 2 30655 Hannover

Kontakt:

Nicole Schubarth-Engelschall, Lukas Pollok <u>Postfach-B32@bgr.de</u>

Vielen Dank für Ihre Aufmerksamkeit!

Quelle: BGR